CS 109 Notes
Note: credit for most figures and lots of paragraphs goes to CS 109.
Date | Title | Reading Time |
---|---|---|
Lecture 11 - Probablistic models | 5 min | |
Lecture 12: Inference part I | 2 min | |
Lecture 13: Inference part II | 2 min | |
Lecture 14 - Modeling | 4 min | |
Lecture 15: General Inference | 3 min | |
Lecture 16 - Beta | 10 min | |
Lecture 17: Adding Random Variables | 4 min | |
Lecture 18: Central Limit Theorem | 1 min | |
Lecture 19: Bootstrapping | 7 min | |
Lecture 20: Algorithmic Analysis | 2 min | |
Lecture 24: Logistic Regression | 4 min | |
Lecture 25: Ethics in Machine Learning | 0 min | |
Lecture 26: Deep Learning | 0 min | |
Reference | 5 min | |
🌋 Lecture 21: Maximum Likelihood Estimation | 5 min | |
🐻 Lecture 23: Naïve Bayes | 0 min | |
🛶 Lecture 22: Maximum A Posteriori | 2 min |
No matching items