Skip to content

Experiment

File: experiment.py

Provides the main module of the package: Experiment.

Experiment

Bases: ABC

Base experiment superclass. All other experiments should inherit from this class. Each sub-experiment must provide an implementation of the "evaluate" abstract method. A sub-experiment has full autonomy to override the basic components such as the training loop "train".

Source code in torchplate/experiment.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
class Experiment(ABC):
    """
    Base experiment superclass. All other experiments
    should inherit from this class. Each sub-experiment
    must provide an implementation of the "evaluate" abstract
    method. A sub-experiment has full autonomy to override
    the basic components such as the training loop "train". 
    """
    def __init__(self, model, optimizer, trainloader, save_weights_every_n_epochs=None, wandb_logger=None, verbose=True, experiment_name=misc.timestamp()):
        """
        Experiment superclass initializer. Each subclass must provide
        a model, optimizer, and trainloader at the very least. 
        Arguments: 
        -----------
        - model: torch nn.module 
        - optimizer: torch optimizer 
        - trainloader: torch Dataloader to be used for training 
        Optional:
        - save_weights_every_n_epochs: how often to save the model weight automatically. Default: None.
            Specify None if you don't want to save weights automatically. 
        - wandb_logger (wandb.init object): pass in if you want to log to wandb. Default: None. 
        - verbose (boolean): if true, print out metrics during training. Default: True. 
        - experiment_name (str): name of the experiment for saving. Default: timestamp. 
        """
        self.model = model 
        self.optimizer = optimizer
        self.trainloader = trainloader
        self.wandb_logger = wandb_logger
        self.verbose = verbose
        self.save_weights_every_n_epochs = save_weights_every_n_epochs
        assert type(self.save_weights_every_n_epochs) is int or self.save_weights_every_n_epochs is None, "save_weights_every_n_epochs must be an integer or None"
        self.epoch_num = 0
        self.experiment_name = experiment_name
        assert type(self.experiment_name) is str, "experiment name must be a string"


    def train(self, num_epochs, gradient_accumulate_every_n_batches=1, display_batch_loss=False):
        """
        Training loop. Can optionally specify how often to accumulate gradients. Default: 1. 
        """
        self.on_run_start()
        self.model.train()

        metrics_ = {}
        first_batch = True
        eval_returns_loss_only = False

        history = {}

        for epoch in range(num_epochs):
            self.epoch_num += 1
            self.on_epoch_start()
            running_loss = 0.0

            tqdm_loader = tqdm(self.trainloader)
            batch_idx = -1
            for batch in tqdm_loader:
                batch_idx += 1
                if not display_batch_loss:
                    tqdm_loader.set_description(f"Epoch {self.epoch_num}")
                self.on_batch_start()

                evals = self.evaluate(batch)

                # registration of metrics
                if first_batch:
                    if torch.is_tensor(evals):
                        if evals.dim() == 0:
                            eval_returns_loss_only = True
                            history["loss"] = []
                    else:
                        assert type(evals) is dict, "if you aren't providing a scalar loss value in evaluate, you must return a dictionary."
                        assert "loss" in evals.keys(), "evaluate must return a 'loss' value"
                        # register metrics
                        for key in evals:
                            curr_metric = metrics.MeanMetric()
                            metrics_[key] = curr_metric
                            history[key] = []
                    first_batch = False

                # get loss val 
                if eval_returns_loss_only: 
                    loss = evals
                else:
                    loss = evals["loss"]

                if display_batch_loss:
                    tqdm_loader.set_description(f"Epoch {self.epoch_num} | loss: {loss:.4f}")

                loss.backward()


                # gradient accumulation
                if gradient_accumulate_every_n_batches > 1:
                    loss = loss / gradient_accumulate_every_n_batches

                    if ((batch_idx + 1) % gradient_accumulate_every_n_batches == 0) or (batch_idx + 1 == len(self.trainloader)):
                        self.optimizer.step()
                        self.optimizer.zero_grad()
                else:
                    self.optimizer.step()
                    self.optimizer.zero_grad()


                # per-batch updates
                if not eval_returns_loss_only:
                    # update metrics 
                    for key in metrics_:
                        metrics_[key].update(evals[key])

                running_loss += loss.item() 
                self.on_batch_end()

            # per-epoch updates 

            epoch_avg_loss = running_loss/len(self.trainloader)
            if self.wandb_logger is not None:
                if eval_returns_loss_only:
                    self.wandb_logger.log({"Training loss": epoch_avg_loss})
                else:
                    self.wandb_logger.log(metrics_)
            if self.verbose:
                if eval_returns_loss_only:
                    print("Training Loss (epoch " + str(self.epoch_num) + "):", epoch_avg_loss)
                else:
                    for key in metrics_:
                        print(f"Training {key} (epoch {str(self.epoch_num)}): {metrics_[key].get()}")

            # reset metrics and update history 
            if not eval_returns_loss_only:
                for key in metrics_:
                    append_val = metrics_[key].get()
                    if torch.is_tensor(append_val):
                        if append_val.requires_grad:
                            append_val = append_val.detach().cpu().item()
                    history[key].append(append_val)
                    metrics_[key].reset()
            else:
                history["loss"].append(epoch_avg_loss)


            # weight saving 
            if self.save_weights_every_n_epochs is not None:
                if self.epoch_num % self.save_weights_every_n_epochs == 0:
                    if not os.path.exists("saved"):
                        os.makedirs("saved")
                    save_path = "saved/epoch_" + str(self.epoch_num) + "-" + self.experiment_name
                    self.save_weights(save_path)


            self.on_epoch_end()

        self.model.eval()
        print('Finished Training!')
        self.epoch_num = 0
        self.on_run_end()

        return history


    @abstractmethod
    def evaluate(self, batch):
        """
        Abstract method which the user must provide. Implement the 
        forward pass and return the loss value. 
        Arguments:
        -----------
        - batch: a batch from the train data loader (i.e., an (x, y) pair). To
        be used as input into the model. 
        Returns:
        -----------
        - A scalar loss value. 
        """
        pass


    def on_batch_start(self):
        """
        Callback that can be overriden. Implement whatever you want
        to happen before each batch iteration. 
        """
        pass


    def on_batch_end(self):
        """
        Callback that can be overriden. Implement whatever you want
        to happen after each batch iteration. 
        """
        pass


    def on_epoch_start(self):
        """
        Callback that can be overriden. Implement whatever you want
        to happen before each epoch iteration. 
        """
        pass


    def on_epoch_end(self):
        """
        Callback that can be overriden. Implement whatever you want
        to happen after each epoch iteration. 
        """
        pass


    def on_run_start(self):
        """
        Callback that can be overriden. Implement whatever you want
        to happen before each run. 
        """
        pass


    def on_run_end(self):
        """
        Callback that can be overriden. Implement whatever you want
        to happen after each run. 
        """
        pass


    def save_weights(self, save_path=None):
        """
        Function to save model weights at 'save_path'. 
        Arguments:
        - save_path: path to save the weights. If not given, defaults to current timestamp. 
        """ 
        if save_path is None:
            if not os.path.exists("saved"):
                os.makedirs("saved")
            save_path = "saved/" + misc.timestamp() + ".pth"
        torch.save(self.model.state_dict(), save_path)
        print("Model weights saved at: " + str(save_path))


    def load_weights(self, weight_path):
        """
        Function to load model weights saved at 'weight_path'. 
        Arguments:
        - weight_path: path pointing to the saved weights. 
        """
        self.model.load_state_dict(torch.load(weight_path))
        print("Weights loaded!")

__init__(model, optimizer, trainloader, save_weights_every_n_epochs=None, wandb_logger=None, verbose=True, experiment_name=misc.timestamp())

Experiment superclass initializer. Each subclass must provide a model, optimizer, and trainloader at the very least. Arguments:


  • model: torch nn.module
  • optimizer: torch optimizer
  • trainloader: torch Dataloader to be used for training Optional:
  • save_weights_every_n_epochs: how often to save the model weight automatically. Default: None. Specify None if you don't want to save weights automatically.
  • wandb_logger (wandb.init object): pass in if you want to log to wandb. Default: None.
  • verbose (boolean): if true, print out metrics during training. Default: True.
  • experiment_name (str): name of the experiment for saving. Default: timestamp.
Source code in torchplate/experiment.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
def __init__(self, model, optimizer, trainloader, save_weights_every_n_epochs=None, wandb_logger=None, verbose=True, experiment_name=misc.timestamp()):
    """
    Experiment superclass initializer. Each subclass must provide
    a model, optimizer, and trainloader at the very least. 
    Arguments: 
    -----------
    - model: torch nn.module 
    - optimizer: torch optimizer 
    - trainloader: torch Dataloader to be used for training 
    Optional:
    - save_weights_every_n_epochs: how often to save the model weight automatically. Default: None.
        Specify None if you don't want to save weights automatically. 
    - wandb_logger (wandb.init object): pass in if you want to log to wandb. Default: None. 
    - verbose (boolean): if true, print out metrics during training. Default: True. 
    - experiment_name (str): name of the experiment for saving. Default: timestamp. 
    """
    self.model = model 
    self.optimizer = optimizer
    self.trainloader = trainloader
    self.wandb_logger = wandb_logger
    self.verbose = verbose
    self.save_weights_every_n_epochs = save_weights_every_n_epochs
    assert type(self.save_weights_every_n_epochs) is int or self.save_weights_every_n_epochs is None, "save_weights_every_n_epochs must be an integer or None"
    self.epoch_num = 0
    self.experiment_name = experiment_name
    assert type(self.experiment_name) is str, "experiment name must be a string"

evaluate(batch) abstractmethod

Abstract method which the user must provide. Implement the forward pass and return the loss value.


  • batch: a batch from the train data loader (i.e., an (x, y) pair). To be used as input into the model.

  • A scalar loss value.
Source code in torchplate/experiment.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@abstractmethod
def evaluate(self, batch):
    """
    Abstract method which the user must provide. Implement the 
    forward pass and return the loss value. 
    Arguments:
    -----------
    - batch: a batch from the train data loader (i.e., an (x, y) pair). To
    be used as input into the model. 
    Returns:
    -----------
    - A scalar loss value. 
    """
    pass

load_weights(weight_path)

Function to load model weights saved at 'weight_path'.

  • weight_path: path pointing to the saved weights.
Source code in torchplate/experiment.py
255
256
257
258
259
260
261
262
def load_weights(self, weight_path):
    """
    Function to load model weights saved at 'weight_path'. 
    Arguments:
    - weight_path: path pointing to the saved weights. 
    """
    self.model.load_state_dict(torch.load(weight_path))
    print("Weights loaded!")

on_batch_end()

Callback that can be overriden. Implement whatever you want to happen after each batch iteration.

Source code in torchplate/experiment.py
201
202
203
204
205
206
def on_batch_end(self):
    """
    Callback that can be overriden. Implement whatever you want
    to happen after each batch iteration. 
    """
    pass

on_batch_start()

Callback that can be overriden. Implement whatever you want to happen before each batch iteration.

Source code in torchplate/experiment.py
193
194
195
196
197
198
def on_batch_start(self):
    """
    Callback that can be overriden. Implement whatever you want
    to happen before each batch iteration. 
    """
    pass

on_epoch_end()

Callback that can be overriden. Implement whatever you want to happen after each epoch iteration.

Source code in torchplate/experiment.py
217
218
219
220
221
222
def on_epoch_end(self):
    """
    Callback that can be overriden. Implement whatever you want
    to happen after each epoch iteration. 
    """
    pass

on_epoch_start()

Callback that can be overriden. Implement whatever you want to happen before each epoch iteration.

Source code in torchplate/experiment.py
209
210
211
212
213
214
def on_epoch_start(self):
    """
    Callback that can be overriden. Implement whatever you want
    to happen before each epoch iteration. 
    """
    pass

on_run_end()

Callback that can be overriden. Implement whatever you want to happen after each run.

Source code in torchplate/experiment.py
233
234
235
236
237
238
def on_run_end(self):
    """
    Callback that can be overriden. Implement whatever you want
    to happen after each run. 
    """
    pass

on_run_start()

Callback that can be overriden. Implement whatever you want to happen before each run.

Source code in torchplate/experiment.py
225
226
227
228
229
230
def on_run_start(self):
    """
    Callback that can be overriden. Implement whatever you want
    to happen before each run. 
    """
    pass

save_weights(save_path=None)

Function to save model weights at 'save_path'.

  • save_path: path to save the weights. If not given, defaults to current timestamp.
Source code in torchplate/experiment.py
241
242
243
244
245
246
247
248
249
250
251
252
def save_weights(self, save_path=None):
    """
    Function to save model weights at 'save_path'. 
    Arguments:
    - save_path: path to save the weights. If not given, defaults to current timestamp. 
    """ 
    if save_path is None:
        if not os.path.exists("saved"):
            os.makedirs("saved")
        save_path = "saved/" + misc.timestamp() + ".pth"
    torch.save(self.model.state_dict(), save_path)
    print("Model weights saved at: " + str(save_path))

train(num_epochs, gradient_accumulate_every_n_batches=1, display_batch_loss=False)

Training loop. Can optionally specify how often to accumulate gradients. Default: 1.

Source code in torchplate/experiment.py
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def train(self, num_epochs, gradient_accumulate_every_n_batches=1, display_batch_loss=False):
    """
    Training loop. Can optionally specify how often to accumulate gradients. Default: 1. 
    """
    self.on_run_start()
    self.model.train()

    metrics_ = {}
    first_batch = True
    eval_returns_loss_only = False

    history = {}

    for epoch in range(num_epochs):
        self.epoch_num += 1
        self.on_epoch_start()
        running_loss = 0.0

        tqdm_loader = tqdm(self.trainloader)
        batch_idx = -1
        for batch in tqdm_loader:
            batch_idx += 1
            if not display_batch_loss:
                tqdm_loader.set_description(f"Epoch {self.epoch_num}")
            self.on_batch_start()

            evals = self.evaluate(batch)

            # registration of metrics
            if first_batch:
                if torch.is_tensor(evals):
                    if evals.dim() == 0:
                        eval_returns_loss_only = True
                        history["loss"] = []
                else:
                    assert type(evals) is dict, "if you aren't providing a scalar loss value in evaluate, you must return a dictionary."
                    assert "loss" in evals.keys(), "evaluate must return a 'loss' value"
                    # register metrics
                    for key in evals:
                        curr_metric = metrics.MeanMetric()
                        metrics_[key] = curr_metric
                        history[key] = []
                first_batch = False

            # get loss val 
            if eval_returns_loss_only: 
                loss = evals
            else:
                loss = evals["loss"]

            if display_batch_loss:
                tqdm_loader.set_description(f"Epoch {self.epoch_num} | loss: {loss:.4f}")

            loss.backward()


            # gradient accumulation
            if gradient_accumulate_every_n_batches > 1:
                loss = loss / gradient_accumulate_every_n_batches

                if ((batch_idx + 1) % gradient_accumulate_every_n_batches == 0) or (batch_idx + 1 == len(self.trainloader)):
                    self.optimizer.step()
                    self.optimizer.zero_grad()
            else:
                self.optimizer.step()
                self.optimizer.zero_grad()


            # per-batch updates
            if not eval_returns_loss_only:
                # update metrics 
                for key in metrics_:
                    metrics_[key].update(evals[key])

            running_loss += loss.item() 
            self.on_batch_end()

        # per-epoch updates 

        epoch_avg_loss = running_loss/len(self.trainloader)
        if self.wandb_logger is not None:
            if eval_returns_loss_only:
                self.wandb_logger.log({"Training loss": epoch_avg_loss})
            else:
                self.wandb_logger.log(metrics_)
        if self.verbose:
            if eval_returns_loss_only:
                print("Training Loss (epoch " + str(self.epoch_num) + "):", epoch_avg_loss)
            else:
                for key in metrics_:
                    print(f"Training {key} (epoch {str(self.epoch_num)}): {metrics_[key].get()}")

        # reset metrics and update history 
        if not eval_returns_loss_only:
            for key in metrics_:
                append_val = metrics_[key].get()
                if torch.is_tensor(append_val):
                    if append_val.requires_grad:
                        append_val = append_val.detach().cpu().item()
                history[key].append(append_val)
                metrics_[key].reset()
        else:
            history["loss"].append(epoch_avg_loss)


        # weight saving 
        if self.save_weights_every_n_epochs is not None:
            if self.epoch_num % self.save_weights_every_n_epochs == 0:
                if not os.path.exists("saved"):
                    os.makedirs("saved")
                save_path = "saved/epoch_" + str(self.epoch_num) + "-" + self.experiment_name
                self.save_weights(save_path)


        self.on_epoch_end()

    self.model.eval()
    print('Finished Training!')
    self.epoch_num = 0
    self.on_run_end()

    return history