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Section 1.

Introduction and Vectors

Lecture 1: 9/21/21

We will go over some course logistics to start us off.

1.1 Course logistics

• Prerequisites: some calculus and basic programming. No need for prior linear algebra
experience.

• Course requirements:

– Weekly section

– Weekly homework problem set with programming component in Julia.

– Two lectures per week

– Weekly “low-stakes” take-home quizzes. 48 hours to complete.

• The course textbook is Introduction to Applied Linear Algebra – Vectors, Matrices, and
Least Squares. We will cover chapter’s 1-17.

1.2 Vector Notation

In this course, we treat a vector as follows:

Vector: A vector is an ordered list of numbers (think array in computer code). The
entries of a vector are called components. The number of elements in a vector is the
size of the vector.

We use n-vector notation to describe a vector where n is the size of the vector. Say we have
a vector that is of size 5. We call that vector a 5-vector.

Another point to note about vectors is that the size of the vector determines how many
dimensions that vector is. A 5-vector is a five-dimensional vector. Spatially, you should think
of each component of a vector as specifying the coordinate of the vector in that dimension
(this is especially true for vectors in vector spaces since only vectors can exist there). For
example, say we have the three dimensional vector [−2, 3, 5]. In three-dimensional Cartesian
coordinate space, we can think of the −2 as denoting the location of the vector along the
x− axis, the 3 along the y − axis, and the 5 along the z − axis.

There are also special types of vectors:

• unit-vector:

• zero-vector:

• one-vector:
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1.3 Theoretical Underpinnings

Along with the usual notes from the class itself, I will occasionally introduce and describe
a bit of the theoretical underpinnings we will learn in this class. Linear algebra contains a
handful of formulas that, to the naked eye, makes it hard to decipher the true meaning and
intuition behind the numbers. In addition, I will also lay out some concepts not covered in
the course to assist in my understanding of the bigger picture of linear algebra1.

To start us off on theoretical front, we will define a few concepts not used in this course but
important for linear algebra in general. First, the definition of linear algebra itself:

Linear algebra: Linear algebra is the study of linear maps on finite-dimensional vector
spaces [1].

Seems a bit convoluted right? In English, this definition really is saying “Linear algebra is
the study of mapping one collection of vectors to another”.

Vector space: A vector space is a set V which contains vectors in space where the prop-
erties of commutativity, associativity, additive identity, additive inverse, multiplicative
identity, distributive properties hold.

That is, basically just a space where vectors live. This is useful because we can perform
operations in a closed vacuum and in fact, operations on the space itself. Which leads us
to what a linear map. We won’t formally introduce a linear map (also referred to as a
linear transformation) just yet as that is the topic discussed later, but briefly speaking, a
linear map is simply a function that maps one vector space to another vector space while
preserving the properties of additivity and homogeneity (which is what makes it linear).

1Linear algebra is the stepping stone from computational (high school) to abstract math (college). That is,
in LA we can no longer get away with defining a bunch of computational steps for performing some operation
for various cases. Instead, we define properties and theorems (as we will do in these notes) and use these
to solve the problems. As such, you will need to understand the theoretical underpinnings (i.e. how this all
works) well.
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Section 2.

Linear Functions

We will talk about linear functions and an extension of a linear function called an affine
function.

Note: it is important to understand that the word “function” is a generalization of a mapping
from one set of things to another set of things. The type of those things is important in how
a function is defined. A function that maps vectors to scalars (what we will do in this section)
is called a scalar-valued function. A function that maps vectors to vectors (what we will do
in section 7) is called a vector-valued function. You can have many different mappings that
maps many different types of things so it is important to understand that the word “function”
is just a general term.

2.1 Linear Functions

Of course, we use mathematical notation to declare the function itself and give its type (i.e.
vector-valued, scalar-valued, etc.). Here is such notation2:

Function notation: We will use the following mathematical notation for a function in
our case (i.e. with vectors):

f : Rn → R

which means f is a function that maps real n-vectors to real scalars (scalar-valued
function).

Wait what?! A function is something that maps a vector to a scalar? It may not make too
much sense, but think of it like this. Let us use the continuous function notation we are all used
to from high school. Say we have f(3). This tells use the value of f at 3. This works similarly
to the notation above in the case of vectors. Say we have a vector x. Then f(x) represents
the function f which takes in the vector x and returns the value of f at x (remember to
think of a vector in cartesian space as the coordinates along each dimension; if it is easier,
think of the function taking in the entries of the vector itself: f(x) = f (x1, x2, . . . , xn)). This
value is in fact a scalar which is why we say a function maps a vector to scalars.

While we are all familiar with the f(x) notation, we should start to become familiar with
how we will describe functions in linear algebra dealing with vectors. Basically, we need a
way to specify what the value is for any possible input argument.

• Traditionally (the familiar way), we can write a function like f(x) = x1 + x2 − x3.

• We can also describe function based on attributes in order to guide how to find the
value from its arguments.

2To give some more examples, f : Rn → Rn (vector-valued), etc.
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– An example of this is the sum function which traditionally is written as y =
x1+ · · ·+xn (see how it is shorter just to describe the function as a sum function?).
Moreover, it is also more generalizable. That is, we can utilize the description of
a sum function for any n-vector instead of having to write out the entire formula.

So why so much detail for a seemingly frivolous concept regarding describing functions? Well,
like the sum function, we will begin to familiarize ourself with important types of functions
that play a key role in future topics.

Inner product function: Suppose a is an n-vector. We can define a scalar-valued
function f of an n-vector by:

f(x) = aTx = a1x1 + a2x2 + · · ·+ anxn

Essentially, the inner product function is simply a function which equates to the inner product
between the vector itself and the coefficients of the function (which we can think of as a
fixed vector a).

We now introduce an important concept and classification of a function.

Superposition and linearity: A function f satisfies the superposition if

f(αx+ βy) = αf(x) + βf(y)

holds for all numbers α, β and all n-vectors x, y. A function that satisfies superposition
is called linear.

That is, a function is linear if you can take any two n-vectors and any numbers α, β, and
show the superposition equality. This result (for a linear function) is also generalize-able to
any number of vectors (f (α1x1 + · · ·+ αkxk) = α1f (x1)+ · · ·+αkf (xk)). Let us break this
property down even further. We can think of superposition as a requirement for satisfying
two properties relating to the argument (αx+ βy). One involves the scalar-vector product
and the other involves vector addition.

• Homogeneity: For any n-vector x and any scalar α, f(αx) = αf(x).

• Additivity: For any n-vectors x and y, f(x+ y) = f(x) + f(y).

If the function can satisfy these two properties, it satisfies the superposition equality and is
a linear function. Breaking the equality down into these two properties tells us the following.
Homogeneity states that scaling the (vector) argument is the same as scaling the function
value; additivity says that adding (vector) arguments is the same as adding the function
values. Graphically, this helps us understand why superposition is the requirement for a
function being linear since these both represent linear correlations.

You should think of linearity as a positive correlation between two entities. For example, say
there is a linear relationship between x1 and x2. If you double x1, then you should expect

7



Autumn 2021 ENGR 108 Rohan Sikand

the corresponding value in x2 will also be doubled. An example of this would be y = ax
where a ∈ R (plug in numbers and see for yourself).

Another way of thinking about linearity in the context of linear transformations is described
in 3Blue1Brown’s video here.

2.2 Inner product representation of a linear function

There is a derivation (in the textbook) which shows that the inner product function (defined
above as the inner product of its argument with some fixed vector) is linear. Extrapolating
from this result, we can say that the converse is also true:

If a function is linear, then it can be expressed as the inner product of its argument with
some fixed vector.

That is, there exists some vector a (only one possible a exists) where aTx = f(x). We call
aTx, the inner product representation of f . See the derivation on page 31 of the textbook
to see how this is true. In an applied sense, we can also use this result to determine linearity
based on if we can find a vector a which satisfies f(x) = aTx for any n-vector x.

2.3 Affine functions

We now introduce another class of functions which is almost identical to linear functions
with one small caveat.

Affine function: A linear function plus a constant. A function is affine if it can be
expressed as f(x) = aTx+ b for some n-vector a and scalar b (referred to as the offset).

Mathematically, a function is affine if it satisfies the superposition property but with one
more requirement:

f(αx+ βy) = αf(x) + βf(y)

for all n-vectors x, y, and all scalars α, β that satisfy α+ β = 1. We can use this restricted
superposition property for showing that functions are not affine (via f(αx+ βy) 6= αf(x) +
βf(y) where α+ β = 1).

The difference between affine and linear functions is best showed in the following graphical
representation.
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Figure 1: See how the y-intercept term is not 0 in g(x)? That is the offset term b.
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Section 3.

Norm and distance

Lecture 2 and Lecture 3: 9/23/21, 9/28/21

This section introduces a handful of new concepts and corresponding formulae which are all
defined below. See the textbook for derivations of each identity and example applications.

3.1 Norm

||x|| =
√
xTx

3.2 Mean-squared value

x21 + · · ·+ x2n
n

=
‖x‖2

n

Root Mean-Squared Value (RMS) is the same with a slight modification:

rms =
‖x‖√
n

3.3 Standard deviation, de-mean, average

Standard deviation measures how much things vary from the mean.

std(x) = rms(x̃) =

∥∥x− (1Tx/n)1∥∥
√
n

, x̃ = x− avg(x)1, avg(x) = 1Tx/n

3.4 Distance

dist(a, b) = ‖a− b‖

3.5 Angle

∠(a, b) = arccos

(
aT b

‖a‖‖b‖

)

3.6 Correlation coefficient

ρ =
ãT b̃

‖ã‖‖b̃‖
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Section 4.

Linear Independence

This is an important section and highlights most of the theoretical fundamentals of linear
algebra topics that deals with vectors.

First a foremost, I recommend watching 3Blue1Brown’s video on this topic (link here). His
visual explanations shed light on the intuition behind the important but vague equations
and concepts discussed here.

As we parse through the mathematical jargon, I will briefly summarize a few key points from
3Blue1Brown’s video which should help with the intuition of what is to come.

Before we begin, we introduce a new way of thinking about vectors which should be helpful
for understanding the concepts to come.

Think of vector coordinates as scaling basis vectors: we will introduce basis below
but think of the unit vectors in R2 ((1, 0), (0, 1)). Each vector in R2 can be expressed as
a linear combination of the unit vectors. In other words, a vector in a vector space can
be defined by how much it scales the unit vector.

Recall that we define a linear combination as follows:

Linear Combination: If a1, . . . , am are n-vectors, and β1, . . . , βm are scalars, the n-
vector

β1a1 + · · ·+ βmam

is called a linear combination of the vectors a1, . . . , an. The scalars β1, . . . , βm are called
the coefficients of the linear combination.

4.1 Basis

Basis can be be described in english as a generalization of the unit vectors in R2. In Linear
Algebra, we deal with all sorts of spaces. In English, a basis is a list of vectors in a vector
space that spans the vector space. By “spans” the vector space, we mean that the basis
vectors via linear combinations can form any vector in the vector space.

Basis: A basis of a space V is a set of vectors {v1, . . . , vn} such that each vector v ∈ V
can be written uniquely as a linear combination of v1, . . . , vn.

Parsing this through, we can see this is just a generalization and formalization of the unit
vectors we are all familiar with in R2. How so? Recall that each vector in R2 can be expressed
as a linear combination of the unit vectors ((1, 0), (0, 1)). The remark at the beginning of
this section (from 3Blue1Brown’s video) really helps bring this concept to light.
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4.2 Span

Now that we have both the mathematical definition and the intuition behind what a basis
is, we can define a span. First, in english, a span of a vector space is all of the possible
vectors one can obtain from forming linear combinations with the basis vectors
of that vector space. Now in math:

Span: The set of all linear combinations of a list of vectors v1, . . . , vm (a vector space)
in V is called the span of v1, . . . , vm, denoted span( v1, . . . , vm) . In other words,

span (v1, . . . , vm) = {a1v1 + · · ·+ amvm : a1, . . . , am ∈ R}

4.3 Linear Independence

And we can now finally define linear independence:

Definition. (Linear Independence) A list v1, . . . , vm of vectors in V is called linearly
independent if the only choice of a1, . . . , am ∈ F that makes a1v1 + · · ·+ amvm equal 0
is a1 = · · · = am = 0. If the list v1, . . . , vm of vectors is not linearly independent, it is
considered linearly dependent.

In other words, a list of vectors is linearly independent if and only if all of them cannot
be written as a linear combination of the others.

To understand this geometrically, let us think in R2. If we take all of the vectors in the
list and plot them on the graph, the list is linearly independent if no two vectors sit on the
same line. This makes sense because if they are on the same line, then one of them can be
formed by scaling the other by forming a linear combination with nonzero scalars3. Again,
3Blue1Brown’s video linked here illustrates this concept brilliantly and beautifully.

Figure 2: Example of two vectors that are linearly dependent. Clearly, one is just a scaled
version of the other. Visually, they both sit on the same line (of the same slope of course).

3As 3Blue1Brown put it, one of the vectors in this case does not contribute anything to the span of the
list
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4.3.1 Independence-Dimension Inequality

From the definition of span and linear independence, we have the following corollary called
the independence-dimension inequality: no list of vectors that is larger than the
size of the smallest basis (another list of vectors) can be linearly independent
(Length of linearly independent list ≤ length of spanning list). If you parse this
through, this makes sense since the definition of a basis is that it can be used in conjunction
with linear combinations to form any vector in the vector space. Thus, any vector list that
has more vectors than the basis must mean that some of them can be written as a linear
combination of the other due to the definition of a basis.

4.3.2 Using matrices to determine linear independence

Here is an interesting thought and a teaser of what is to come:

We can determine the scalars in a linear combination that show that a list of vectors is
linearly independent or linearly dependent by representing it as a system of equations
and solving it using matrices.

So this is a but ahead of what we learned thus far since we haven’t introduced matrices. Say
we have three vectors (v1, v2, v3). We can test for linear dependence by forming the following
linear combination:

x1v1 + x2v2 + x3v3 = 0

Now we need to solve for (x1, x2, x3) and determine if at least one of them is nonzero. If so,
then the list is linearly independent.

We have the homogeneous version of the famous system, Ax = b4:

Ax = 0

which we can use to represent the system of equations above by writing the vectors as
columns in a matrix:

 v1i v2i v3i
v1j v2j v3j
v1k v2k v3k

 ·
 x1
x2
x3

 =

 0
0
0


This is a matrix representation of a linear equation. We can solve this using various matrix
operations which are discussed later. Solving linear equations via row reduction in matrices
is discussed in a future section and is a critical part/application of linear algebra.

4which is really a vector-valued linear function represented using matrix form, as we will see later.
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4.4 Orthonormal Vectors

4.5 Gram-Schmidt Process

We can determine if sets of vectors are linearly independent by running an algorithm called
Gram-Schmidt.

4.6 Computational processes

This section included a lot of theoretical underpinnings that are essential to linear algebra.
In an applied setting (such as during an exam), you might be given a set of vectors and will
be asked to determine things relating to the topics discussed here (things such basis, linear
independence, span, etc.). The definitions of these terms are in nature quite abstract and
can be difficult to apply to problems. Fortunately, as we will see, there are several useful
computational techniques/processes we can utilize to determine these things. However, these
processes require an understanding of future topics such as matrices5. Thus, we will have
sections later (such as sections 7 and 10) once we have learned those topics which discusses
these computational processes.

5Indeed, a lot of what linear algebra is all about and what we will learn is about these processes relating
to the concepts discussed here
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Section 5.

Matrices

An important thing to realize is that we have been introducing and studying definitions that
involve sets of vectors rather than just one vector specifically. Thus, we introduce here a
compact way of representing a set of vectors which can then allow us to perform operations
and determine things we wish to determine in a straightforward, computational manner. That
is, we can represent a set of vectors using matrices. And recall that the definition of linear
algebra is simply the study of linear transformations on finite lists of vectors. What this really
means is that linear algebra is the study of operations (transformations) of matrices (lists of
vectors). Actually in fact, as we will see in section 7, you can compactly represent a linear
transformation with a matrix. As such, operations on such transformations is essentially
matrix algebra which a lot of linear algebra courses focus on matrices.

5.1 Matrix-Vector Multiplication

We can represent many different things using matrix-vector multiplication (i.e. linear func-
tions) so it is important to understand the fundamental operation.

If A is an m× n matrix and x is an n-vector, then the matrix-vector product y = Ax is the
m-vector y with elements [2]:

yi =

n∑
k=1

Aikxk = Ai1x1 + · · ·+Ainxn, i = 1, . . . ,m

This is best illustrated via an example [2]:

[
0 2 −1
−2 1 1

] 2
1
−1

 =

[
(0)(2) + (2)(1) + (−1)(−1)
(−2)(2) + (1)(1) + (1)(−1)

]
=

[
3
−4

]
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Section 6.

Matrix Examples

6.1 Geometric Transformations

We mentioned that we can represent linear maps (in this case, vector-valued functions) using
matrices of the form y = Ax. In applications, there are several useful transformations which
we will cover here for the 2-dimensional case.

Remark. You should think of Ax = b as an input-output transformation. That is, the
matrix-vector product of Ax transforms the input vector x into another vector b. Thus,
we can use matrices to represent linear transformations in a compact form.

Solving for one of these values (A, x, or b) is what linear algebra entails. In fact, in this class
lots of problems have you determine what values of A transform x such that b is produced.
And for that, I recommend you firmly understand how matrix-vector multiplication works.
Really visualize what Ax = b means: what values of A such that when A is multiplied with
x produce the correct corresponding values in b?

6.2 Selectors

6.3 Incidence Matrix

6.4 Convolution

The convolution operation is a mathematical operation between two vectors that is, well,
quite convoluted. There is a nice computational algorithm for calculating the convolution
between two vectors by hand which we will get to.

Definition. (Convolution) The convolution of an n-vector a and an m-vector b is the
(n+m1)-vector denoted c = a * b, with entries

ck =
∑

i+j=k+1

aibj , k = 1, . . . , n+m− 1

where the subscript in the sum means that we should sum over all values of i and j in
their index ranges 1, . . . , n and 1, . . . ,m, for which the sum i+ j is k + 1.

Seems a bit difficult to grasp at first which it is.

6.5 Flip-and-drag

Like mentioned, there is a nice computational algorithm for calculating the convolution
between two vectors by hand which we will get to6. I briefly describe the algorithm here, but
I highly recommend just looking at the visual explanation linked here.

6See here for a visual explanation
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Say we have c = a * b. We can perform this calculation by reversing the components of one
of either a or b. Then, take the vector that you reversed and line up the two vectors vertically
such that the last component of the reversed vector lines up with the first component of the
other vector. Here is an example where a = (a1, a2) and b = (b1, b2) where we choose to
reverse b:

a1 a2
b2 b1

We now multiply the components that line up and sum each result. So in this case, we have
a1b1. This will be the first component of c. Now, here is where the “convolution” part comes
in. We “drag” the reversed vector like a sliding window over to the right by one element:

a1 a2
b2 b1

To get the second component, we have a1b2 + a2b1.This process repeats until the reversed
vector falls off the edge.

a1 a2
b2

Thus, we have the 3-vector c:

c = (a1b1, a1b2 + a2b1, a2b2)

The convolution is an interesting operation and is widely used for signal processing in one-
dimension and image processing in two-dimensions (yes, you can apply the convolution to a
matrix7).

7Indeed, the Convolutional Neural Network is a pivotal algorithm that plays a huge role in computer
visiona and deep learning
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Section 7.

Linear Equations

In this section we consider vector-valued linear functions and introduce systems of linear
equations.

In section 2, we learned about scalar-valued functions which maps vectors to real scalars.
Here we introduce vector-valued functions:

Definition. (Vector-valued function) f is a function that maps real n-vectors to real m-
vectors:

f : Rn → R

We can also represent this like so: f(x) = (f1(x), f2(x), . . . , fm(x)). It is important to note
that each component in this function is itself a scalar -valued function.

An much already discussed example is the matrix-vector product function, f(x) = Ax.

The requirement that function satisfies superposition to make a function linear still applies.
Now that we understand matrices, we actually have a proposition defined below in this
section which states that if we represent a vector-valued function via some matrix A (i.e.
f(x) = Ax), then the function is linear.

There are many examples in the real world that we can model via vector-valued linear
functions8. See section 8.2 in the book for more.

7.1 Representing linear functions using matrices

Arguably the most fundamental equation in linear algebra is

Ax = b

Parsing this through, you can see that this is a method to represent a vector-valued linear
function using a matrix A. To understand why, we must understand that a vector-valued
function (f : Rn → Rn) is a mapping between two sets of vectors. That is, given as input
a vector, the function will transform it in someway and then output it. That is, a function
represents a transformation of some sort. We can think of matrix-vector multiplication in
a similar vein. This is because a matrix multiplied by a vector gives us another vector. So
in that sense, we can construct the relevant values of A in Ax = b to represent a certain
vector-valued linear function (Yes!, we can represent an entire linear function via just the

8Note that a lot of exercises deal with finding the mapping A in Ax = b. Thus, you should understand
the models discussed in section 8.2 of the book and be able to generalize
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values in a matrix9). See 3Blue1Brown’s video here for some intuition behind this idea. This
is important because we can then perform a handful of matrix and vector operations to
manipulate such mappings to obtain useful results of things we are interested in (i.e. solving
a system of linear equations using matrices). Indeed, that is why we were are motivated to
represent linear mappings via matrices because linear algebra is quite literally the study of
linear maps on finite-dimensional vector spaces [1]. In fact, that is why matrices and their
operations play a big role in linear algebra: because we can use them to represent things
(linear mappings) we want to study further in concise way.

Because of all of this, we have the following proposition:

Proposition. If a function is linear, we can represent it using matrix-vector multiplication
in the form Ax = b (f(x) = Ax).

And from this we have the following corollary:

Corollary. If a function can be represented via a matrix A in the form Ax = b, then that
function is linear.

This corollary makes a lot of sense. Say we have the linear function f(x). Our input is x
and the function is linear meaning the coefficients are multiplied by the input’s x’s. The
coefficients are simply stored in the matrix A. From another perspective, it makes sense why
we cannot store a nonlinear function in a coefficient matrix. This is because we may have
something like x2 in the function which means we cannot have a simple scalar multiplication
consisting of the coefficient and the input to get the intended output value. Draw out an
example to understand this.

7.2 Systems of linear equations

We now introduce the fundamental topic: how to represent systems of linear equations
via matrices. We will later explore how to solve them using matrix operations in section
10.

Consider a set (also sometimes referred to as a “system” in application settings) of m linear
equation in n unknowns: µ1, . . . , µn:

A11x1 +A12x2 + · · ·+A1nxn = b1

A21x1 +A22x2 + · · ·+A2nxn = b2
...

Am1x1 +Am2x2 + · · ·+Amnxn = bm

Above is your classic set of linear equations we’ve all seen from high school. We say that
the numbers Aij are the coefficients in the equations and the numbers bi are called the

9And if you are wondering how to find those values, take one input and corresponding output and find the
appropriate values by seeing how much each input is scaled to get to the output. Then, construct a matrix
that is correctly indexed such that the product between itself and another vector gives the intended result
based on the principles of matrix-vector multiplication.
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right-hand-sides where, of course, the numbers xi are unknowns. We can succinctly write
these equations in matrix notation as

Ax = b

where A is an m× n matrix (coefficient matrix) and b is the m-representing the right-hand
sides. We then aim to find an x that satisfies this equation. If indeed we do find an x where
Ax = b holds, we refer to x as a solution to the system of equations.

Importantly, a system of linear equations can either have:

• no solution

• one solution

• multiple solutions

which we will dive into shortly. First, let us see a concrete example.

Consider the following system of linear equations

x1 + x2 = 1, x1 = −1, x1 − x2 = 0

We can write this via matrix notation written as Ax = b as follows:

A =

 1 1
1 0
1 −1

 , b =

 1
−1
0


Take another example:

The following equations
x1 + x2 = 1, x2 + x3 = 2

can be written as Ax = b like so:

A =

[
1 1 0
0 1 1

]
, b =

[
1
2

]
Nicely, we can solve these equations using matrix operations as we will see later.

7.2.1 Over-determined and under-determined systems of linear equations

We can classify systems of linear equations as follows:

A system of linear equations is called:

• over-determined if m > n (coefficient matrix A is tall).

– This means that there are more equations that unknown variables.
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• under-determined if m < n (coefficient matrix A is wide).

– This means that there are more unknown variables than equations.

• square if m = n (coefficient matrix A is square).

– This means that there are the same amount of unknown variables and equa-
tions.

Something to note is that a a system of equations with a zero right hand side, Ax = 0 is
referred to as a homogeneous system of equations. Thus, x = 0 is a solution to any homoge-
neous system of equations. Interestingly enough, this can be tied back to determining linear
independence discussed earlier. Specifically, take the following example of the coefficients of
linear combinations.

Let a1, . . . , an denote the columns of A. The system if linear equations Ax = b can then be
expressed as

x1a1 + · · ·+ xnan = b

Parsing this through, you can see that b is a linear combination of a1, . . . , an and coefficients
x1, . . . , xn. Solving for Ax = b is the same as finding the coefficients to a linear combination
that express b as a linear combination of a1, . . . , an. Thus, we can determine linear indepen-
dence of a1, . . . , an by seeing if there exists a nonzero vector b that satisfies Ax = b. Or, in
other words, we can determine that a1, . . . , an are linearly dependent if the only solution is
b = 0 or Ax = 0 (homogeneous).

Remark. The connection between linear systems and linear independence makes sense since
solving Ax = b is really asking “can we write b is a linear combination of the columns of A?”.

7.2.2 When does a system have 0, 1, or infinitely many solutions?

It is worth understanding the general cases of what types have systems have what solutions.
To intuitively understand why, we must introduce some new terms10.

Particularly, we have the following:

Let A be an m× n matrix. The system Ax = b has:

• No solution if b does not belong to the column space C(A) of A.

• Exactly one solution if b ∈ C(A) and the null space N(A) consists of only the
zero vector.

• Infinitely many solutions if b belongs to C(A) and the null space N(A) has at
least one nonzero vector.

We need to introduce a few new terms here to understand this.
10note that these new terms are not officially apart of ENGR 108 and are generally covered in more abstract

linear algebra classes. Also, watch 3Blue1Brown’s wonderful explanation of these concepts here.
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Definition. (Column Space) The column space of an m× n matrix A is the span of
the columns of A. It is denoted as C(A) [3].

Definition. (Null Space) The null space of A, denoted N(A), is the set of all solutions
to the homogeneous system Ax = 0 [3].

To understand column spaces, recall the definition of span. Parsing the above definition,
we say that a vector is in the column space if it can be written as a linear combination of
the columns of A. From this logic, we have: for the linear system Ax = b, if b is in C(A),
then there exists some solution x. This makes sense since the Ax is just a matrix-vector
multiplication resulting in a vector which is a linear combination of the columns (i.e. vectors)
of A the scalars (i.e. coefficients) of x11. We do not consider the trivial (zero) solution to be
a solution. Thus, we must understand null spaces. Intuitively, null spaces should be thought
of in terms of linear transformations (since you can represent a linear transformation in a
matrix like A). That is, the null space is simply the set of all vectors which, when transformed
by A, result in the zero vector12.

Now you can understand when a system has 0, 1, or infinitely many solutions. It is worth
noting that if a system has > 1 solutions, it really has infinitely many solutions.

Interestingly enough, we also have the following conclusion:

Theorem. In almost all cases (not all though), overdetermined systems have no solution.
In all cases, underdetermined systems have either no solution or infinitely many solutions
(that is, if the underdetermined system has a solution, then it is has infinitely many
solutions.

Thus, we can use the definitions of overdetermined and underdetermined systems to quickly
come to conclusions about the consistency13 of systems.

Also, note that the entire third part of ENGR 108 is dedicated to finding approximate
solutions to overdetermined systems using a method called least squares.

11So the product Ax is a linear combination of the columns of A and the coefficients stored in x. Thus, if
some x results in Ax = b, then we know that b is simply the linear combination described in the previous
sentence. Thus, there exists at least one solution.

12If you think about it, this is like the analog of the y-intercept for linear maps.
13meaning how many solutions a system has.
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Section 8.

Linear Dynamical Systems

Linear dynamical systems (LDS) is an application topic requiring matrix-vector multipli-
cation. Essentially, we can represent sequences of states (e.g. time series) which are called
dynamical systems.

Say we have a a sequence of n-vectors x1, x2, . . .. We have something called the state which
is a vector xt at time t. xt−1 is the previous state and xt+1 is the next state. Examples might
be economic output in n sectors, age distribution. These are dynamical systems. So what
makes a dynamical system linear? A dynamical system is linear if the next state after the
present one can be represented via matrix-vector multiplication (since Ax represents a linear
transformation).

Formally, a dynamical system is linear if

xt+1 = Atxt, t = 1, 2, . . .

where A is the dynamics matrix of size n× n.

Parsing this through, this is saying that, if we have a linear system, we can obtain the next
vector in the sequence by transforming the current vector in some way. This transformation
is compactfied in a matrix form, A. That is the mental model you should have:

Remark. the matrix A is used to represent some transformation that is applied to the
current input xt to obtain the next input, xt+1.

8.1 Linear Dynamical Systems

Ok... now that we have some intuition described in words, let us formally define a linear
dynamical system.

Definition. Linear Dynamical System

Suppose we have a sequence of n-vectors, x1, x2, . . .. The index denotes the time t. The
value at xt is called the state. We call the sequence x1, x2, . . . the state trajectory. xt
represents the present state where xt+1 represents the next state and xt−1 represents
the previous state.

A linear dynamical system is then a model for the sequence where each next state,
xt+1 is given by the linear function:

xt+1 = Atxt

for t = 1, 2, . . .. We call At the dynamics matrix.
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Intuitively, we should think of xt changing over time dynamically14 (imagine a time series)
where the equation given for xt+1 gives us a way to update the current state xt to xt+1 as a
function of xt15,16,17. We call the system time invariant if A remains the same throughout
all times t.

Why is this powerful? Because, all we need to know is the current state xt and the matrix
At and we can get our next state xt+1. In other words: If we know the current value of x, we
can find all future values [2].

Remark. So to construct a linear dynamical system, we need to construct a matrix A, the
dynamics matrix, which represents how each state is transformed to produce the next state.

Additionally, we have:

Remark. (At)ij (xt)j is the contribution to (xt+1)i from (xt)j .

In words, this is saying that the jth component of the current state xt, multiplied by the
corresponding value in the matrix, (At)ij , gives us part of what xt+1i is equal to (since the
matrix-vector multiplication is a summation of one row of the matrix and a column vector).
This is best illustrated through examples such as the SIR model example in the book (section
9.3) [2].

8.2 Epidemic dynamics

Let us audit that example briefly. We have the following LDS modelled by:

xt+1 =


0.95 0.04 0 0
0.05 0.85 0 0
0 0.10 1 0
0 0.01 0 1

xt
where the x vectors are 4-vectors where each component represents the percentage of the
population in one of four categories: susceptible (S), infected (I), recovered and immune (R),
and deceased (D). Thus, each state is of the shape:

xt =


S
I
R
D


To get the next state xt+1, we use matrix-vector multiplication:

14hence the name dynamical system.
15In that sense, the definition is recursive.
16Note that the function is linear which is why we call these linear dynamical systems. Recall from before

that we discussed how linear transformations can be compactly represented in matrix form which is what
we have here in Ax. See corollary 7.1.

17There is also nonlinear systems which are of interest because most real world systems are inherently
non-linear in nature. There are whole fields of intriguing study dedicated to these systems such as chaos
theory.

24

https://en.wikipedia.org/wiki/Nonlinear_system


Autumn 2021 ENGR 108 Rohan Sikand

xt+1 =


0.95 0.04 0 0
0.05 0.85 0 0
0 0.10 1 0
0 0.01 0 1

 ·

St
It
Rt

Dt

 = (0.95St + 0.04It + 0Rt, 0Dt, ...)

In other words, the first component of the next state xt+1 is the percentage of the population
that is in the susceptible category (S) which is equal to 95% of the people who were susceptible
in the current state (i.e. they are still susceptible) plus 4% of people who were infected in the
current state (meaning they are recovered but not immune18. As such, if you parse through
the indices, you can start to understand the remark above (remark 8.1).

18yes, the naming of the categories here is quite ambiguous.
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Section 9.

Matrix Multiplication

We now introduce a fundamental operation: matrix multiplication.

9.1 Matrix-matrix multiplication

To multiply two matrices, A and B, their dimensions must be compatible. This means that
the number of columns of A equals the number of rows of B. Say we have A which is m× p
and B which is p× q. We define the product matrix C = AB of size m× n as follows:

Definition. (Matrix Multiplication)

Cij =

p∑
k=1

AikBkj = Ai1B1j + · · ·+AipBpj , i = 1, . . . ,m, j = 1, . . . , n

You can try to parse this through, but there several algorithms/rules which you should
become familiar with.

Remark. To find the i, j element of C, go to the ith row of A and the jth column of
B and take the dot product between these two vectors.

Here is an example:

[
−1.5 3 2

1 −1 0

] −1 −1
0 −2
1 0

 =

[
3.5 −4.5
−1 1

]

To get the product, just follow the algorithm described in the remark above. For example,
for C1,2, we have (−1.5)(−1) + (3)(−2) + (2)(0) = −4.5.

9.2 Properties

The main one is asymmetry:

AB 6= BA

This does not even make sense unless A and B are of the same size. But even then, when
you multiply it out, it may not equal.

We also have some others:

• Associativity: (AB)C = A(BC)

• Associativity with scalar multiplication: γ(AB) = (γA)B
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• Distributivity with addition: A(B + C) = AB +AC

• Transpose of product: (AB)T = BTAT

Importantly, you should know that you can derive further properties from these main prop-
erties (e.g. (A+B)(C +D) = AC +AD +BC +BD)

Some others:

• yT (Ax) =
(
yTA

)
x =

(
AT y

)T
x

9.3 Matrix power

We can multiply a square matrix by itself to form AA or A2. By convention, we also have
A0 = I. Some other properties include AkAl = Ak+l and

(
Ak
)l

= Akl.

What happens if we have Ak where k is negative? We will discuss such a case later. This is
called an inverse for the −1 case (which makes sense since A−k = 1

Ak ).

Note that in this course, we restrict our study of matrix powers to integer powers. It is
possible to have something like A1/2 but that is out of scope for us.

9.4 Examples

9.4.1 Inner Products

In the beginning of the course, we introduced the inner product which is defined as aT b. This
is actually a special case of matrix multiplication as aT is really just an 1× n matrix and b
is a n× 1 matrix. The result is a 1× 1 matrix (i.e. scalar):

aT b = a1b1 + a2b2 + · · ·+ anbn

which is really:

[
a1 a2 a3

]
∗

 b1
b2
b3


So that is where the definition of an inner product comes from. This makes sense since, in
the remark above, we defined matrix multiplication as taking dot products between certain
rows (the row vector aT in this case) and certain columns (the row vector b in this case).

9.4.2 Linear dynamical systems

One cool thing about linear dynamical systems is that you only need one state input to
determine the future states (since the future states depend on the calculation of the very
next state).

For example, consider a time-invariant linear dynamical system:
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xt+1 = Axt

We can find Xt+2 like so:

xt+2 = Axt+1

But what didn’t see before is that we can actually represent this via matrix powers and the
original input:

xt+2 = Axt+1 = A (Axt) = A2xt

To see how this is derived, recall that xt+1 = Axt. Thus, we just plug in for xt+1 in xt+2 =
Axt+1 and get A (Axt) = A2xt. We can generalize this pattern as follows:

xt+` = A`xt

where A` is the matrix that propagates the state forward ` time steps.

9.5 QR Factorization

This is a way to represent Gram-Schmidt in compact matrix notation.
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Section 10.

Matrix Inverses

In this section, not only will we introduce a fundamental property of matrices (the inverse),
but also we will see how to solve systems of equations with matrices.

10.1 Left and right inverses

Before we jump into matrix inverses, let us see it with scalars. We say that a number x that
satisfies xa = 1 is the inverse of a. This what we are all used to from grade school. The
inverse of a number is 1 over that number. This definition can be extended to matrices:

Definition. (Left Inverse) A matrix X that satisfies XA = I is called a left inverse of A.

This has the following corollary:

Corollary. If A has a left inverse X then the columns of A are linearly independent.

We say that if a matrix has a left-inverse, it is left-invertible.

Example. If A has orthonormal columns (meaning A is orthogonal), then AT is a left inverse
of A since ATA = I.

Proposition. (Left-invertibility and column independence) If A has a left inverse X then
the columns of A are linearly independent. Or, vise versa: In order for X to exist, the left
inverse of A, to exist, the columns of A are linearly independent (that is, a matrix has a left
inverse if and only if its columns are linearly independent)19.

Proof. Suppose Ax = 0 where the left inverse ofA is C. Then, 0 = C(Ax) = (CA)x = Ix = x.
This makes sense since we are representing the linear combination of the vectors contained
in the columns A with the scalars in the vector x. So if x = 0 in Ax = 0, then the only
vector that satisfies Ax = 0 is the one with all 0s. This means that the only coefficients that
make the linear combination of the column vectors equal to 0 are 0s (see 4.3.2).

Something important to note:

Proposition. (Wide matrices are not left-invertible) A wide matrix m < n is not left-
invertible by the independence-dimension inequality (since a matrix has a left inverse if and
only if its columns are linearly independent).

We can actually solve a system of linear equations by finding the left-inverse (there are many
ways to do this as we will see but here is one of them).

Example. (Solving linear equations with a left inverse) Suppose Ax = b where C is a
left-inverse of A. We therefore know that CA = I. Thus,

Cb = C(Ax) = (CA)x = Ix = x.

19I do not understand this at all
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Parsing this through, we try to multiply Cb. We can plug in for b with Ax and then do
some matrix algebra to get (CA)x. From here, we know that CA = I so we replace CA with
I. Then, by the definition of the identity matrix, we get Ix = x. Therefore, the solution is
x = Cb.

But how do we actually construct the inverse? We will see later.

Let us now introduce the right inverse:

Definition. (Right Inverse) A matrix X that satisfies AX = I is called a right inverse of
A.

A lot of the same examples/properties above hold for the right inverse as well.

Important ones:

Proposition. A matrix is right-invertible is its rows are linearly independent.

Thus:

Corollary. (Tall matrices are not right-invertible) A tall matrixm > n is not right-invertible
by the independence-dimension inequality (since a matrix has a right inverse if and only if
its rows are linearly independent).

Let us now generalize this concept into one, unified concept of an inverse.

10.2 Inverse
Theorem. If a matrix is left-and-right-invertible, then the left and right inverses are
unique and equal.

Proof. To see this, suppose AX = I and Y A = I. Then

X = (Y A)X = Y (AX) = Y

When a matrix A has both a left inverse Y and a right inverse X, we call the matrix X/Y
(note that X = Y ) simply the inverse of A, and denote it as A1. That is, in order for a matrix
to be invertible, it must have a left and right inverse. These will be equal to each other and
are also unique meaning that there only exists one A−1 if A is invertible.

Definition. (Inverse) The inverse of a matrix A, denoted as A−1 is defined such that

AA−1 = A−1A = I

We refer to a square matrix that is invertible as a nonsingular matrix whereas a non
invertible square matrix is referred to as a singular matrix.
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Theorem. For a matrix A to be invertible, it must be square.

Proof. For A to be invertible, A must have a left inverse and a right inverse. Tall matrices
are not right-invertible, while wide matrices are not left-invertible. Thus, A must be neither
wide nor tall (so it must be square).

By this, we also see that
(
A−1

)−1
= A.

We will explore this in more depth later in this section, but note that we can use the concept
of an inverse to solve Ax = b.

Consider a square system of n linear equations with n variables: Ax = b. If A is invertible,
then for any n-vector b, we can find x like so:

x = A−1b

Note that this is the unique solution to Ax = b (since A−1 is the right inverse of Aa).
It is unique since A−1 is the left inverse of Ab.

aConfused as to why this is the case. Where is the proof?
bConfused as to why this is the case. Where is the proof?

Proof.

(
A−1

)
Ax =

(
A−1

)
b[(

A−1
)
A
]
x =

(
A−1

)
b

Ix =
(
A−1

)
b

x =
(
A−1

)
b

10.2.1 Invertibility conditions

There are a lot of conditions regarding inverses of matrices. The nice thing about this is that
if A is invertible then we know that:

• A is invertible

• The columns of A are linearly independent

• The rows of A are linearly independent

• A has a left inverse

• A has a right inverse

That is, if any of these hold, then all of them do.
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10.2.2 Properties

Here are some properties of inverses:

• (AB)−1 = B−1A−1

•
(
AT
)−1

=
(
A−1

)T
•
(
A−1

)k
= A−k

• A0 = I

– Thus, AkAl = Ak+l

10.3 Computing the Inverse

There are several methods for computing the inverse (including a common method utilizing
things we have not learned about at this point). The method introduced in the book is via
QR factorization:

Computing the inverse via QR factorization Suppose A is invertible. This means
that the columns of A are linearly independent. So we can perform QR factorization
and get:

A = QR

We know that R is upper triangle and hence, invertible as well. We also know that since
Q is orthogonal, we have QTQ = I. Therefore, we derive the following:

A−1 = (QR)−1 = R−1Q−1 = R−1QT

We will see how to compute R later in the least squares part of the course20.

10.4 Solving systems of equations with matrices

We have now learned enough about matrices21 to introduce arguably the most important
use case of them: solving systems of equations. This concept is fundamental to linear algebra.
Note that there are multiple ways to do this and we will explore a few.

10.4.1 Row reduction

The main approach is to use the row reduction algorithm.

20this is referring to the residual R seen in least squares right?
21Note that we may introduce a few new matrix operations along the fly if they are necessary.
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Section 11.

Least Squares

We now introduce a powerful idea for approximately solving systems of linear equations that
are over-determined. This idea is called least squares where we minimize the sum of squares
of the errors in the equations. It has many applications since a lot of real world systems are
overdetermined.

11.1 Least squares problem

Let us formalize the least squares problem.

Definition. Least Squares Problem

Suppose that we have an m × n matrix that is tall (meaning m > n, there are more
rows and columns). This means that the system of linear equations is over-determined
meaning that there are more equations (m) than variables to choose (n). Thus, these
equations only have a solution if b is a linear combination of the columns of A. However,
this does not work in most cases, as for most cases of b, there is no vector x that satisfies
Ax = b.

Thus, we seek an approximate solution for x. We define the residual vector, r, as
follows:

r = Ax− b

Our goal is now to find an x where r is as small as possible. Since r is a vector and
not a scalar, to put things in terms of scalars, our actual goal is to choose an x that
minimizes the norm of the residual (||Ax− b||). If successful, we have Ax ≈ b.

Due to the definition of the norm, it is easier to define things terms of squares. Thus,
we might as well minimize the norm of the residual squared (which is simply the sum of
squares of the residual’s components) since it yields the same result.

‖Ax− b‖2 = ‖r‖2 = r21 + · · ·+ r2m

Thus, we can now formally introduce the least squares problem:

We want to find an n-vector x̂ that minimizes ‖Ax− b‖2 (called the objective
function, over all possible choices of x. This is denoted using the notation

minimize ‖Ax− b‖2

where the variable is x (what we wish to find) and A, b are the data. Thus, x̂ is a solution
to the problem if
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‖Ax̂− b‖2 ≤ ‖Ax− b‖2.

So in summary, our goal is to find a vector x such that the norm of the residual (||Ax− b||)
is minimized22.

You can also think of the matrix multiplication like so (this is called the column interpreta-
tion):

‖Ax− b‖2 = ‖(x1a1 + · · ·+ xnan)− b‖2

In this representation, the least squares problem is to find a linear combination of columns
of A that is closest to b.

11.1.1 Geometric intuition behind least squares

We will cover linear least squares data fitting next section, but briefly here, we will also
cover how least squares is used in the real world to gain some sort of intuition (watch this).
Basically, say we have some data plotted on a cartesian plot. We want to find a line of best
fit:

Figure 3: The lines extended from the function to each point are the residual errors. We sum
those up, square them, and aim to minimize that value.

This is linear regression. But to solve linear regression (e.g. find the line of best fit), we can
use linear least squares. We do this by constructing a linear equation of the form

y = ax+ b

Note that in higher dimensions, we use the equation we are familiar with in this class:
y = ATx+ b but the principle still applies.

22Note that in data fitting contexts, this whole process is referred to as regression.
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So how do we do this? Our goal is to construct the linear equation above by finding the vector
x (in the 2d case, this is a 1-vector scalar called the slope) and bias vector b (y-intercept in
the 2d case) that fit the data as best as possible. This is where least squares come into play
(least squares determines how to construct the linear equation, e.g. line in two-dimensions).

Specifically, if we take the sum of differences at each point (that is the difference between
the line and the data point and sum each one up), we want to minimize such a sum.

11.2 Solution

So how do we actually compute the solution? Recall the column interpretation of the least
squares problem which said that the least squares problem is to find a linear combination of
columns of A that is closest to b. This implies that for us to derive a closed-form solution to
a least squares problem, we have one assumption:

Remark. Assumption in our closed-form solution to the least squares problem: The columns
of A must be linearly independent23.

11.3 Deriving the solution via calculus

So now let us derive the formula for the solution. Eventually, we will see that the formula is
A†b which will derive via calculus (it is a minimization problem after all).

From calculus, we know that any x̂ must satisfy:

∂f

∂xi
(x̂) = 0, i = 1, . . . , n

which we can express as:

∇f(x̂) = 0

where ∇f(x̂) is the gradient of f evaluated at x̂. This checks in with our understanding of
basic optimization from calculus I: the derivative of the function at the minimum must be
0— we just generalize this here to higher dimensions.

We can express the general gradient in matrix form:

∇f(x) = 2AT (Ax− b)

How did we derive this formula? Using calculus rules such as chain rules applied to matrices.
Specifically, here is that derivation. We first write out the objective function as a sum:

f(x) = ‖Ax− b‖2 =
m∑
i=1

 n∑
j=1

Aijxj − bi

2

23Wait so how do you compute the solution if the columns of A are linearly dependent?
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which allows us to find ∇f(x)k (i.e. the partial derivative of one x... now we just want to
find the one where the gradient is 0). Taking this derivative (the partial derivative of f with
respect to xk.), we get:

∇f(x)k =
∂f

∂xk
(x)

=
m∑
i=1

2

 n∑
j=1

Aijxj − bi

 (Aik)

=

m∑
i=1

2
(
AT
)
ki
(Ax− b)i

=
(
2AT (Ax− b)

)
k

which is exactly 2AT (Ax− b). Thus, since we aim to find an x such that ∇f(x) = 0, we have:

∇f(x̂) = 2AT (Ax̂− b) = 0

now here is the key part of the derivation: we can write this as:

ATAx̂ = AT b

Manipulating this using matrix operations to get x̂ on the left-hand side, we have

x̂ =
(
ATA

)−1
AT b

which is precisely

x̂ =
(
ATA

)−1
AT b

which is equal to

Solution of a least squares problem:

x̂ = A†b.

And we are done. That is the solution (remember though, that this is still an approximation)
derived via calculus on matrices. Recall that you can compute the value of A†b via QR
factorization. See the textbook for that.

Note that you can also derive this solution without calculus. See the textbook for that.
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11.3.1 Example problem

We will briefly run through a small example. Consider the linear system Ax = b where

A =

 2 0
−1 1
0 2

 , b =

 1
0
−1


This is a matrix representation of the over-determined set of linear equations:

2x1 = 1, −x1 + x2 = 0, 2x2 = −1

There is no solution since the system is over-determined. Thus, we can use least squares to
find an approximate solution.

Recall that the least squares objective function can also be written using summation notation:

‖Ax− b‖2 =
m∑
i=1

 n∑
j=1

Aijxj − bi

2

11.3.2 Computing x̂ in practice

This subsection covers things not talked about in ENGR 108 but I think it is fruitful to have
a discussion about such concepts when applying these methods in the real world.

We will see in the next chapter that we can use least squares to fit data in the real world
(i.e. regression). This is relevant since many real world systems are over-determined.

In a first calculus class, you learn how to solve basic optimization problems by analytically
finding where the derivative (i.e. the slope) is 0. This gets you the exact solution (closed-
form solution). This type of method is analytical and referred to as a direct method in
computational settings. However, one must realize that in the real world, it is rare that you
will get a small enough system where you can go ahead and practically compute the exact
solution using a direct method (picture a 100, 000×100, 000matrix)24—see here. Furthermore,
most systems in nature are nonlinear whose solutions must be computed iteratively (see here)
instead of directly. That is why we see methods such as gradient descent.

So in theory, you can find the closed-form solution, x̂, using the direct method:

x̂ =
(
ATA

)−1
AT b = A†b

but in actuality, you will probably have to use an iterative solver such as gradient descent
(which is why it is so prevalent in training models such as neural networks since they are
large and nonlinear).

24Actually in fact, it is usually quicker to compute the solution via an iterative method at this scale.
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As an aside, you may be asking “are we doing machine learning with least squares?”. And
the answer will be completely up to your preferences. There is no standard boundaries as to
what is considered machine learning so it can be quite ambiguous. For example, one might
think of machine learning as defining a model and then iteratively finding the minimum
of the cost function across a training data distribution. But here we define the solution in
closed-form... not using an iterative method.
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Section 12.

Least Squares Data Fitting

Note on the goals of the course: the main application of this course and all of linear algebra
in our context is to model some real world problem as a system of equations and solve it
by recovering the unknown variable(s). We first begin our study by solving linear systems
where the equations are linear. Then, we will solve nonlinear systems which is especially
relevant since a lot of real world problems are inherently nonlinear. In general, there are two
main methods for solving systems: direct and iterative. Direct methods yield a closed-form,
exact solution and can usually be defined via formula–that is, it takes a finite amount of
steps predefined based on the input variable(s). This would be all nice and dandy but a lot
of real world problems cannot be solved via direct methods because of time complexity due
to large inputs. Thus, we seek approximations of the exact solution using iterative methods
(e.g. gradient descent). Iterative methods are also very relevant for solving nonlinear systems.
So in summary, our main goal in our study of linear algebra is to learn how to
model a problem as a linear or nonlinear system and then learn how to solve for
or approximate the solution to the system.

Here we discuss a highly relevant application of least squares where we try to find a math-
ematical model given some observed data25. That is, we can apply the concepts of least
squares to fit a plot of observed data (i.e. regression). Specifically, we can represent some
sort of real world data as an overdetermined system of linear equations and compute the
solution to the system using least squares.

12.1 The problem

The problem of using least squares for data fitting is quite intuitive. We will look at regression
here but the core functionality can really be extended to meet the needs of other problems.

Say we have some data consisting of (x, y) pairs where the x’s are the samples and the y’s
are the corresponding labels. We aim to find a function f(x) such that f(x) ≈ y meaning
that we aim to transform the input sample x, in such a way that it is close to y. Recall from
section 7 that we can represent linear functions using a linear system of the form Ax = b. So
that is what we do here: we represent the data fitting problem via Ax = b where A contains
the input samples, x contains the model’s parameters, and b contains the corresponding
labels. As such, we aim to solve for x, the model’s parameters which, when multiplied by
A, the inputs, will transform the inputs in such a way so that it is close to b, the labels. As
such, we develop a cost function of the form

minimize ‖Ax− b‖2

Note that it is common to use θ instead of x to represent the model’s parameters:
25Yes, this is like machine learning. You might think of least squares as then the same thing as linear

regression. The difference is that linear least squares is one of many ways to perform linear regression.
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minimize ‖Aθ − b‖2
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Section 13.

Least Squares Classification

We now consider the use of least squares for fitting models who take in class values (i.e.
classification).

13.1 The classification problem

For the binary classification problem, we want to approximate y by finding a function f :

f : Rn → {−1,+1}

where y ≈ f(x).

We have the following terms where y is the ground-truth value and ŷ is the predicted value.

Definition. (Prediction errors)

• True positive. y = +1 and ŷ = +1.

• True negative. y = −1 and ŷ = −1.

• False positive. y = −1 and ŷ = +1.

• False negative. y = +1 and ŷ = −1.

13.1.1 Confusion matrix

We can form a confusion matrix to visualize how well a model fitted a given dataset by
utilizing the counts of each prediction error defined above.

Say we have the dataset (generally the predictions on the test distribution are used for
determining the values of a confusion matrix):

x(1), . . . , x(N), y(1), . . . , y(N)

and a model f̂ . For binary classification, we can assembly a 2× 2 table where the columns
correspond to the values predicted (ŷ) and the rows correspond to the ground-truth values
(y). The entries of each slot in the table then give the count of each corresponding prediction
error. Example:

ŷ = +1 ŷ = −1 Total
y = +1 Ntp Nfn Np

y = −1 Nfp Ntn Nn

All Ntp +Nfp Nfn +Ntp N

where, for instance, Ntp corresponds to the count of true positives.
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We can calculate useful performance metrics from the confusio matrix to gauge how well the
model performed.

13.2 Least squares classifier
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Section 14.

Multi-objective least squares

Here we introduce how to combine multiple least squares problems into one. That is, we
consider the problem of choosing a vector that achieves a compromise in making two or more
norm squared objectives small. The idea is widely used in data fitting, image reconstruction,
control, and other applications [2]. For example, in a machine learning problem, we may wish
to optimize more than one loss function (such as that the prediction is similar to the ground
truth and that the the prediction is small).

To preface, the general idea here is to first combine the objectives into one least squares
problem and solve it the “vanilla” way.

14.1 Multi-objective least squares problem

• Choose n vector x that minimizes k (multiple potentially) objectives. That is, we now
have multiple objectives (goals) that we want to minimize.

• In single least squares, we wanted to do something like fit a line to some data. Here,
we have multiple objectives:

J1 = ‖A1x− b1‖2 , . . . , Jk = ‖Akx− bk‖2

• To get this is ordinary least squares form, we formed a weighted sum objective:

J = λ1J1 + · · ·+ λkJk = λ1 ‖A1x− b1‖2 + · · ·+ λk ‖Akx− bk‖2

where J is a scalar.
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Section 1.

Resources

Here I will list some additional resources that can aid in the understanding of matrix methods
and linear algebra in general.

• Kimberly Brehm’s course on LA (link)

• MIT OCW 18.06

• Navigating Linear Algebra series

• 3B1B Essence of Linear Algebra

• Linear Algebra Done Right

• LA chapter in Deep Learning book

Additionally, see the Linear Algebra Toolkit which I like to describe as a calculator for linear
algebra.

Some other things:

• Strang’s textbooks on LA

• The Art of Linear Algebra graphic notes
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Section 2.

Questions

Here are some lingering and fleeting questions that came to mind. Format-wise, each question
is defined by the main bullet point and my thoughts/answer(s) are then jotted in sub bullet
points.

• What is the difference between least squares data fitting and linear regression?

– It seems that least squares gives us a loss function for the regression which needs
to be performed via optimization. However, then what is the least squares solution
then? Is that the exact perfect/loss minimized fit line? Why do we use optimization
then in practice? Is the solution then not always calculable? See more here.
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